[Todos] Lattice permutations and Poisson-Dirichlet distribution of cycle lengths
Pablo Groisman
pgroisma en dm.uba.ar
Jue Ago 11 06:11:43 ART 2011
El lunes 15 de agosto a las 14.30hs en la Sala de Seminarios del
Departamento de Matemática (FCEN-UBA), Stefan Grosskinsky (University
of Warwick) dará una charla titulada
Lattice permutations and Poisson-Dirichlet distribution of cycle lengths
RESUMEN: We study random spatial permutations on Z^3 where each jump x
-> \pi(x) is penalized by a factor exp(-T ||x-\pi(x)||^2). Previous
simulation results strongly suggest that the system exhibits a phase
transition, where macroscopic cycles are present iff T is below a
finite critical value. We observe that the lengths of such cycles are
distributed according to Poisson-Dirichlet. This can be explained
heuristically using a stochastic coagulation-fragmentation process for
long cycles, which is supported by numerical data. This is joint work
with Alexander Lovisolo and Daniel Ueltschi.
Estan todos cordialmente invitados.
Más información sobre la lista de distribución Todos