<div dir="ltr"><div class="gmail_default" style="font-size:small">Estimados, </div><div class="gmail_default" style="font-size:small"><br></div><div class="gmail_default" style="font-size:small">Les paso este aviso de seminario que me hicieron llegar.</div><div class="gmail_default" style="font-size:small"><br></div><div class="gmail_default" style="font-size:small">***********************</div><div class="gmail_quote"><div dir="ltr"><div><div><div><div><font size="2"><br></font><div><div></div></div></div><div><span style="font-family:tahoma,sans-serif">Se invita al seminario <b>"Regímenes dinámicos inducidos por confinamiento" </b>, dictado por el </span><span style="font-family:tahoma,sans-serif">Dr. Paolo Malgaretti, Max Planck Institute for Intelligent Systems, Germany<b>.<br><font size="2"><br>Fecha: </font></b><font size="2"> <b>Miércoles 22/8 , 15 HS.</b><br><b>Lugar</b>: Laboratorio de Física (aula 7218), Universidad Nacional de General Sarmiento, Los Polvorines.<br></font></span><font size="2"><span style="font-family:tahoma,sans-serif"><b>Contacto</b>: <a href="mailto:flor@campus.ungs.edu.ar" target="_blank">flor@campus.ungs.edu.ar</a></span></font><br><span style="font-family:tahoma,sans-serif"></span></div></div><font size="2"><span style="font-family:tahoma,sans-serif"><br></span><span style="font-family:tahoma,sans-serif">Florencia Carusela</span><br><i>Area de Física <br>Instituto de Ciencias-UNGS<br><span style="font-family:tahoma,sans-serif"></span>email: <span style="font-family:tahoma,sans-serif"><a href="mailto:flor@campus.ungs.edu" target="_blank">flor@campus.ungs.edu</a>.</span></i><span style="font-family:tahoma,sans-serif"><i>ar</i><br></span><span style="font-family:tahoma,sans-serif"></span><span style="font-family:tahoma,sans-serif"></span></font><br><div><div><div dir="ltr"><div><b><font size="4">/*****************************<wbr>**********************/<br>Confinement--induced dynamical regimes<br><br></font>Dr. Paolo Malgaretti, Max Planck Institute for Intelligent Systems, Germany</b><br><br><br>Recent studies have shown that the presence of boundaries can strongly affect the dynamics of physical systems.<br>For
example, negative mobility and fluid recirculation occurs when an
electrolyte is driven in a varying-section channels, rectification
occurs active particles such as molecular motors or active swimmers
moving in inhomogeneous environments and off--diagonal terms in the
mobility tensor appears for binary mixtures of hard sphere confined
between corrugated plates.<br>Clearly the interplay between the confined
systems and the confining walls is maximized when the typical length
scales of the confined system match with the size of the confining
walls.<br>In this contribution I will discuss the general mechanisms at
the basis of the interplay between the confined system and the
confinement. In particular, by means of a few example I will show how
analytical insight into the possible regimes can be attained.<br><br>Firstly,
I will discuss how the electrostatic interaction between a tracer
particle and the channel walls affect particle dynamics. In such a
scenario, novel dynamical regimes such as negative mobility and
asymmetric passage times can arise due to the interplay between the
electrostatic interactions and the local entropic drive induced by the
varying--section channel.<br><br>Secondly I will show how the insight
gained by such studies can be transferred to the problem of polymer
translocation across varying--section channels.<br>In particular, I will
show that, under suitable approximation, it is possible to reduce the
problem of polymer translocation across varying--section channels to
that of a single point--like particle under an effective potential that
can be derived from the equilibrium local free energy of the polymer.
Interestingly, the model predicts a non-monotonous dependence on the
translocation time of the polymer across the pore appears. By comparing
with Brownian dynamics simulations I will discuss the quantitative
reliability of the point--like approximation as well as its regime of
validity.<br><br>Finally, when the interactions between the confined
systems and the confinement are non-conservative, as it happens for
hydrodynamic interactions, the interplay between the confined system,
say an active swimmer, and the confinement is more involved. I will,
briefly discuss how such a scenario can be described on the basis of the
experienced gained with the conservative forces. <div class="m_-6552258691560647755gmail-adL"><br></div></div></div></div></div></div></div></div>
</div><br><br clear="all"><div></div><div class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><br><div style="display:inline"></div><div style="display:inline"></div></div></div></div></div></div></div>