<div dir="ltr"><div><div>Invitamos a la comunidad a participar del mini workshop que se
organizó por la visita de investigadores del Russian Quantum Center a
la Argentina. Se llevará a cabo este<b> lunes 28 en el aula Federman</b>,
Departamento de Física, Pab. I, FCEN, UBA.<br></div><div><br></div><div>El
evento comenzará con las presentaciones del Programa Interinstitucional
de Fortalecimiento de la Ciencia y Tecnología Cuánticas (Arg.) y del
Russian Quantum Center (RQC). Luego contaremos con 5 charlas científicas
a cargo de investigadores del RUC, de 30 minutos cada una intercaladas
con charlas cortas de perspectivas de las líneas de investigación en
cuántica en el AMBA, Argentina.<br></div><div><div><div id="m_-9165680362594006886m_4368883692144480956gmail-q_32" aria-label="Hide expanded content" aria-expanded="true"><div></div></div></div><div><div><br></div><div>El objetivo del encuentro es conocer sobre investigación en común y tender lazos para futuras colaboraciones.</div><div><br></div><div><b>Cronograma</b><br></div><div></div><div>9:45 Reception<br></div><div>10:00 Presentation of the Argentinian Quantum Science and Technology Program</div><div>10:30 Presentation of the Russian Quantum Center</div><div>11:00 Coffee Break</div><div>11:30 Experimental Quantum Physics with atoms in argentina<br></div><div>11:45
RQC presentation "Towards quantum simulations with ultracold thulium
atoms at an optical lattice formed by 1064 nm laser light"</div><div>12:15 Theoretical Quantum Physics at UBA<br></div><div>12:30 Theoretical Quantum Physics at UNLP-IFLP</div><div>12:45 RQC presentation "Quantum algorithms and software in the NISQ era"</div><div>13:15 Lunch Break<br></div><div>14:30 Experimental Quantum Photonics in Argentina</div><div>14:45 RQC presentation "Nanophotonics and ultrafast magnetism in dielectrics; 1D and 2D materials for quantum technologies"</div><div>15:15 RQC presentation "Quantum computing with atoms and photons"</div><div>15:45 Short break</div><div>16:00 Experimental Quantum solid-state physics in argentina.<br></div><div>16:15 RQC presentation "Polariton platform for quantum computing"</div><div>16:45 Lab Tours.<font color="#888888"><br></font></div><div><br></div><div>Resúmenes de las Charlas del Russian Quantum Center:<br></div><div><br></div><div><p class="MsoNormal"><b><span style="font-family:Roboto;color:black" lang="EN-US">Alexey Akimov, PI of the “Quantum Simulators and Integrated Photonics” group</span></b><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><b><span style="font-family:Roboto;color:rgb(68,114,196)" lang="EN-US">Towards quantum simulations with ultracold thulium atoms at an optical lattice formed by 1064 nm laser light</span></b><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><span style="font-family:Roboto;color:rgb(68,114,196)" lang="EN-US">Bose-Einstein
condensation (BEC) is a powerful tool for a wide range of research
activities, a large fraction of which is related to quantum simulations.
Various problems may benefit from different atomic species. Thulium
atoms possess dipole moment of 4 Bohr magneton in the ground state,
allowing long-term interactions. It also has number of non-chaotic
low-field Feshbach resonances, allowing fine control of the near-filed
interactions. It also has relatively simple level structure compared to
the other magnetic lanthanoids and thus is a quite promising subject for
applications in quantum simulations.</span><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><span style="font-family:Roboto;color:rgb(68,114,196)" lang="EN-US">Nevertheless,
cooling down novel species interesting for quantum simulations to BEC
temperatures requires a substantial amount of optimization and is
usually considered to be a difficult experimental task. Specifically,
previous attempts of cooling thulium atom to Bose-Einstein condensation
temperature at 532 nm dipole trap were not successful. </span><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><span style="font-family:Roboto;color:rgb(68,114,196)" lang="EN-US">Here
we report on implementation of the Bayesian machine learning technique
to optimize the evaporative cooling of thulium atoms and achieved BEC in
an optical dipole trap. The developed approach could be used to cool
down other novel atomic species to quantum degeneracy without additional
studies of their properties. We also analyzed the atomic loss mechanism
for the 532 nm optical trap, used in the Bose-condensation experiment,
and compares it with the alternative and more traditional micron-range
optical dipole trap.</span><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><span style="font-family:Roboto;color:rgb(68,114,196)" lang="EN-US">While
the condensate of the thulium atom has a lot of applications in quantum
simulations and other areas of physics, it can also serve as a unique
diagnostic tool for many atomic experiments. In the present study, the
Bose-Einstein condensate of the thulium atom was successfully utilized
to diagnose an optical lattice and detect unwanted reflections in the
experiments with the 1064 nm optical lattice, which will further be used
in a quantum gas microscope experiment.</span><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><span style="font-family:Roboto;color:black" lang="EN-US"> <u></u><u></u></span></p><p class="MsoNormal"><b><span style="font-family:Roboto;color:black" lang="EN-US">Aleksey Fedorov, PI of the “Quantum Information Technologies” group</span></b><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><b><span style="font-family:Roboto;color:rgb(68,114,196)" lang="EN-US">Quantum algorithms and software in the NISQ era </span></b><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><span style="font-family:Roboto;color:rgb(68,114,196)" lang="EN-US">Quantum
computing is aimed to solve tasks, which are believed to be
exponentially hard to existing computational devices and tools. A
prominent example of such classically hard problems is simulating
complex quantum many-body systems, in particular, for quantum chemistry.
However, solving realistic problems with quantum computers encounters
various difficulties, which are related, first, to limited computational
capabilities of existing quantum devices and, second, to the efficiency
of algorithmic approaches. In the present work, we address the
algorithmic side of quantum computing. I will review recent progress in
quantum algorithms for NISQ era devices, both in the context of their
characterization and solving prototypes of useful tasks with them. I
will also cover recent results on qudit-based computing with trapped
ions and other physical platforms. </span><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><b><span style="font-family:Roboto;color:black" lang="EN-US"> </span></b><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><b><span style="font-family:Roboto;color:black" lang="EN-US">Alexander Chernov, PI of the “Quantum Spintronics and Low-Dimensional Materials” group</span></b><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><b><span style="font-family:Roboto;color:rgb(68,114,196)" lang="EN-US">Nanophotonics and ultrafast magnetism in dielectrics; 1D and 2D materials for quantum technologies</span></b><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><span style="font-family:Roboto;color:rgb(68,114,196)" lang="EN-US">Excitation
and control of magnons by laser pulses opens up new possibilities for
applications including opto-magnetic magnetization switching for
information recording, all-optical excitation of spin waves, and also
allows new approaches for information processing with ultra-low energy
dissipation. However, the possibility of subwavelength localization of
light in magnetic structures, leading to efficient excitation of
magnons, which by their nature do not absorb light, has so far been
lacking. We have succeeded in combining nanophotonics and laser-induced
ultrafast magnetism to effectively excite and control spin dynamics in
magnetic dielectric structures.</span><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><span style="font-family:Roboto;color:rgb(68,114,196)" lang="EN-US">In
the second part of the talk, I will demonstrate the experimental
results of induced interaction between magnetic dielectric films and 2D
materials and the way how we intend to study quantum materials at
femtosecond timescales. I will address the opportunities of 1D and 2D
materials for quantum technologies, including quantum simulator based on
2D materials. </span><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><b><span style="font-family:Roboto;color:black" lang="EN-US"> </span></b><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><b><span style="font-family:Roboto;color:black" lang="EN-US">Stanislav Straupe, PI of the “Atomic and optical quantum computing” group</span></b><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><b><span style="font-family:Roboto;color:rgb(68,114,196)" lang="EN-US">Quantum computing with atoms and photons</span></b><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><span style="font-family:Roboto;color:rgb(68,114,196)" lang="EN-US">I
will overview the experimantal research in our group aimed at
developing prototypes of digital quantum computers using two different
hardware platforms. The first platform is based on single trapped
neutral atoms in arrays of optical tweezers. I will describe the
techniques which we use to create uniformly filled arrays of single
Rubidium atoms with individual addressing. We will discuss the
implementation of fast and high-fidelity single qubit oerations on
hyperfine qubits and prospects towards realizing high-fidelity two-qubit
operations using targeted Rydberg excitation of individual atoms. The
second part of my talk will describe linear-optical approach to
quantumcomputing. I will present experiments using quantum dot-based
single photon sources and programmable integrated optics created by
femtosecond laser writing. I will also talk about our efforts towards
creating a fully integrated quantum photonic processor based on SiN
integrated waveguides and on-chip superconducting detectors.</span><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><b><span style="font-family:Roboto;color:black" lang="EN-US"> </span></b><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><b><span style="font-family:Roboto;color:black" lang="EN-US">Alexey Kavokin, PI of the “Quantum Polaritonics” group</span></b><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><b><span style="font-family:Roboto;color:rgb(68,114,196)" lang="EN-US">Polariton platform for quantum computing </span></b><span style="font-family:Roboto;color:black" lang="EN-US"><u></u><u></u></span></p><p class="MsoNormal"><span style="font-family:Roboto;color:rgb(68,114,196)" lang="EN-US">Exciton-polaritons
are bosinic quasiparticles that combine properties of photons and
excitons: hydrogen-like crystal excitations. The Bose-Einstein
condensation and superfluidity of exciton-polaritons have been
experimentally observed in 2008 and 2015, respectively. In 2018 we have
proposed the concept of a qubit based on a ring shape polariton
condensate with quantized states characterized by discrete topological
charges. The concept has been put in practice. By 2023 an Ising
simulator based on 22 polariton qubits has been demonstrated, single and
double qubit gates developed. I will overview the progress in quantum
Polaritonics and address its perspectives.</span></p></div><div><br></div><div><b>Oradores a cargo de la perspectiva argentina:</b></div><div><br></div><div><div>Presentation of the Argentinian Quantum Science and Technology Program - Juan Pablo Paz and Marcos Saraceno</div><div>Experimental Quantum Physics with atoms in argentina - Christian Schmiegelow<br></div>Theoretical Quantum Physics at UBA - Augusto Roncaglia<br><div>Theoretical Quantum Physics at UNLP-IFLP - Federico Holik<br></div>Experimental Quantum Photonics in Argentina - Miguel Larotonda</div><div>Experimental Topological Quantum Solid-state Physics in Argentina - Mariano Real</div></div></div></div></div>