[Todos] ECI: Curso de Alon Orlitsky
Ana Ruedin
ana.ruedin en dc.uba.ar
Vie Jun 6 15:42:35 ART 2008
Están cordialmente invitados a asistir al curso:
----------------------------------------------------------------------------------------
*Theory and applications of universal data compression and probability
estimation*
-----------------------------------------------------------------------------------------
que dictará el Profesor Alon Orlitsky, ECE Department, University of
California, San Diego, USA,
_ <http://kodiak.ucsd.edu/alon/>_en el marco de la Escuela de Ciencias
Informáticas, ECI.
El curso abarcará la estimación de eventos de baja probabilidad, entre
otros temas.
Lugar: Pabellón I Ciudad Universitaria, Departamento de Computación.
Fechas: del 28 de julio al 2 de agosto 2008.
Horario: de 14 a 17 hrs.
Duración del curso: 15 horas.
Idioma: inglés.
Arancel para alumnos y docentes de instuciones nacionals provinciales o
estatales: 50$.
Program:
The class covers the theory and applications of universal data
compression, and explores their relation to probability estimation. No
prior knowledge is assumed and the material ranges from standard
textbook to ongoing research.
Time permitting, topics will include:
- Compression and its entropy limit. Standard compression algorithms
such as Shannon, Huffman, and arithmetic coding. Showing that they
compress certain information processes to their entropy.
- Challenges arising when the underlying distribution is unknown, for
example when compressing text or images. The universal compression
approach. Commonly used universal compression algorithms such as
Krichevsky-Trofimov and Lempel-Ziv. Their optimality.
- The necessity to compress data over large alphabets. The effect of
alphabet size on compression performance. Techniques for data
compression over large alphabets.
- The relation between universal compression and probability estimation.
Estimation of low- probability events, population sizes, and the number
of species. The Good-Turing estimator.
- The relation between universal compression and investment portfolio
theory.
- Relations to combinatorial topics such as the Bell and Stirling
numbers and to Hardy and Ramanujan’s seminal work on the number of
partitions.
*Bibliografía*
1. P.S. Laplace. Philosphical essays on probabilities. Springer
Verlag, New York.
2. G.H. Hardy and S. Ramanujan. Asymptotic formulae in combinatory
analysis. Proceedings of London Mathematics Society, 17(2):75–115,
1918.
3. R. Fisher, A. Corbet, and C. Williams. The relation between the
number of species and the number of individuals in a random sample
of an animal population. jae, 12:42–48, 1943.
4. C.E. Shannon. A mathematical theory of communication. Bell Systems
Technical Journal, 27:379–423, 623–656, 1948. I.J. Good. The
population frequencies of species and the estimation of population
parameters. Biometrika, 40(3/4):237–264, December 1953.
5. J. Rissanen. Universal coding, information, prediction, and
estimation. IEEE Trans. on Information Theory, 30(4):629–636, July
1984.
6. R. Thisted and B. Efron. Did shakespeare write a newlydiscovered
poem? Biometrika, 74:445–455, 1987.
7. T. Cover and J. Thomas. Elements of Information Theory. John Wiley
and sons., 1991.
8. T.M. Cover. Universal portfolios. Mathematical Finance, 1(1):1–29,
January 1991.
9. A. Orlitsky, N.P. Santhanam, and J. Zhang. Always Good Turing:
Asymptotically optimal probability estimation. Science,
302(5644):427–431, October 17 2003.
10. A. Orlitsky, N.P. Santhanam, and J. Zhang. Universal compression
of memoryless sources over unknown alphabets. IEEE Trans. on
Information Theory, 50(7):1469–1481, July 2004.
Profesor:
* Alon Orlitsky <http://kodiak.ucsd.edu/alon/>, ECE Department,
University of California, San Diego, USA.
Alon Orlitsky joined the UCSD faculty in 1997, after a two-year
stint as a quantitative analyst with D.E. Shaw & Company. From
1986-1996, he was a member of the technical staff at AT&T Bell
Labs' Mathematical Sciences Research Center. Orlitsky received his
Ph.D. in Electrical Engineering from Stanford University in 1986,
and his M.Sc., also from Stanford, in 1982. He did his
undergraduate work in mathematics (B.Sc. 1980) and Electrical
Engineering (B.Sc. 1981) at Israel's Ben-Gurion University. His
honors include an ITT International Fellowship in 1982, and an
IEEE W.R.G. Baker best-paper award in 1992. Orlitsky co-edited a
book on "Theoretical advances in neural computation and learning".
Más información:
http://www.dc.uba.ar/events/eci/2008/courses/t1/
http://www.dc.uba.ar/events/eci/2008/
---------------------------------------
Dra. Ana Ruedin
Departamento de Computación
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
Ciudad Universitaria, Pabellón I, E.P.
(C1428EGA) Buenos Aires. Argentina.
Tel.: +54-11-4576-3390/96 int 719
Fax: +54-11-4576-3359.
e-mail: ana.ruedin en dc.uba.ar
Más información sobre la lista de distribución Todos